Nuprl Lemma : int_term_to_ipoly-minus
∀[b:Top]. (int_term_to_ipoly("-"b) ~ minus-poly(int_term_to_ipoly(b)))
Proof
Definitions occuring in Statement : 
int_term_to_ipoly: int_term_to_ipoly(t)
, 
minus-poly: minus-poly(p)
, 
itermMinus: "-"num
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
int_term_to_ipoly: int_term_to_ipoly(t)
, 
itermMinus: "-"num
, 
int_term_ind: int_term_ind, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalAxiom, 
extract_by_obid, 
hypothesis
Latex:
\mforall{}[b:Top].  (int\_term\_to\_ipoly("-"b)  \msim{}  minus-poly(int\_term\_to\_ipoly(b)))
Date html generated:
2017_09_29-PM-05_55_33
Last ObjectModification:
2017_05_10-PM-04_19_30
Theory : omega
Home
Index