Step
*
2
1
2
of Lemma
ipolynomial-term-cons
1. m : iMonomial()
2. u : iMonomial()
3. u1 : iMonomial()@i
4. v : iMonomial() List@i
5. ∀t1,t2:int_term().
(t1 ≡ imonomial-term(m) "+" t2
⇒ accumulate (with value t and list item m):
t "+" imonomial-term(m)
over list:
v
with starting value:
t1) ≡ imonomial-term(m) "+" accumulate (with value t and list item m):
t "+" imonomial-term(m)
over list:
v
with starting value:
t2))@i
⊢ ∀t1,t2:int_term().
(t1 ≡ imonomial-term(m) "+" t2
⇒ accumulate (with value t and list item m):
t "+" imonomial-term(m)
over list:
v
with starting value:
t1 "+" imonomial-term(u1)) ≡ imonomial-term(m) "+" accumulate (with value t and list item m):
t "+" imonomial-term(m)
over list:
v
with starting value:
t2 "+" imonomial-term(u1)))
BY
{ (Auto THEN BHyp 5 THEN Auto THEN (RWO "-1" 0 THENA Auto)) }
1
1. m : iMonomial()
2. u : iMonomial()
3. u1 : iMonomial()@i
4. v : iMonomial() List@i
5. ∀t1,t2:int_term().
(t1 ≡ imonomial-term(m) "+" t2
⇒ accumulate (with value t and list item m):
t "+" imonomial-term(m)
over list:
v
with starting value:
t1) ≡ imonomial-term(m) "+" accumulate (with value t and list item m):
t "+" imonomial-term(m)
over list:
v
with starting value:
t2))@i
6. t1 : int_term()@i
7. t2 : int_term()@i
8. t1 ≡ imonomial-term(m) "+" t2@i
⊢ imonomial-term(m) "+" t2 "+" imonomial-term(u1) ≡ imonomial-term(m) "+" t2 "+" imonomial-term(u1)
Latex:
Latex:
1. m : iMonomial()
2. u : iMonomial()
3. u1 : iMonomial()@i
4. v : iMonomial() List@i
5. \mforall{}t1,t2:int\_term().
(t1 \mequiv{} imonomial-term(m) "+" t2
{}\mRightarrow{} accumulate (with value t and list item m):
t "+" imonomial-term(m)
over list:
v
with starting value:
t1) \mequiv{} imonomial-term(m) "+" accumulate (with value t and list item m):
t "+" imonomial-term(m)
over list:
v
with starting value:
t2))@i
\mvdash{} \mforall{}t1,t2:int\_term().
(t1 \mequiv{} imonomial-term(m) "+" t2
{}\mRightarrow{} accumulate (with value t and list item m):
t "+" imonomial-term(m)
over list:
v
with starting value:
t1 "+" imonomial-term(u1))
\mequiv{} imonomial-term(m) "+" accumulate (with value t and list item m):
t "+" imonomial-term(m)
over list:
v
with starting value:
t2 "+" imonomial-term(u1)))
By
Latex:
(Auto THEN BHyp 5 THEN Auto THEN (RWO "-1" 0 THENA Auto))
Home
Index