Nuprl Lemma : itermAdd_functionality

[a,b,c,d:int_term()].  (a "+" c ≡ "+" d) supposing (a ≡ and c ≡ d)


Proof




Definitions occuring in Statement :  equiv_int_terms: t1 ≡ t2 itermAdd: left "+" right int_term: int_term() uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a equiv_int_terms: t1 ≡ t2 all: x:A. B[x] int_term_value: int_term_value(f;t) itermAdd: left "+" right int_term_ind: int_term_ind prop:
Lemmas referenced :  equiv_int_terms_wf int_term_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution lambdaFormation hypothesis dependent_functionElimination thin hypothesisEquality sqequalRule addEquality functionEquality intEquality lambdaEquality axiomEquality lemma_by_obid isectElimination isect_memberEquality because_Cache equalityTransitivity equalitySymmetry

Latex:
\mforall{}[a,b,c,d:int\_term()].    (a  "+"  c  \mequiv{}  b  "+"  d)  supposing  (a  \mequiv{}  b  and  c  \mequiv{}  d)



Date html generated: 2016_05_14-AM-06_59_57
Last ObjectModification: 2015_12_26-PM-01_12_33

Theory : omega


Home Index