Step
*
1
2
1
2
of Lemma
linearization-value
1. u : ℤ List
2. v : ℤ List List
3. ∀[p:iPolynomial()]
∀f:ℤ ⟶ ℤ
(int_term_value(f;ipolynomial-term(filter(λm.snd(m) ∈b v;p)))
= linearization(p;v) ⋅ map(λvs.accumulate (with value x and list item v):
x * (f v)
over list:
vs
with starting value:
1);v)
∈ ℤ)
supposing no_repeats(ℤ List;v)
4. p : iPolynomial()
5. no_repeats(ℤ List;[u / v])
6. f : ℤ ⟶ ℤ
⊢ int_term_value(f;ipolynomial-term(filter(λm.((list-deq(IntDeq) u (snd(m))) ∨bsnd(m) ∈b v);p)))
= ((poly-coeff-of(u;p) * accumulate (with value x and list item v): x * (f v)over list: uwith starting value: 1))
+ int_term_value(f;ipolynomial-term(filter(λm.snd(m) ∈b v;p))))
∈ ℤ
BY
{ Assert ⌜int_term_value(f;ipolynomial-term(filter(λm.((list-deq(IntDeq) u (snd(m))) ∨bsnd(m) ∈b v);p)))
= (int_term_value(f;ipolynomial-term(filter(λm.(list-deq(IntDeq) u (snd(m)));p)))
+ int_term_value(f;ipolynomial-term(filter(λm.snd(m) ∈b v;p))))
∈ ℤ⌝⋅ }
1
.....assertion.....
1. u : ℤ List
2. v : ℤ List List
3. ∀[p:iPolynomial()]
∀f:ℤ ⟶ ℤ
(int_term_value(f;ipolynomial-term(filter(λm.snd(m) ∈b v;p)))
= linearization(p;v) ⋅ map(λvs.accumulate (with value x and list item v):
x * (f v)
over list:
vs
with starting value:
1);v)
∈ ℤ)
supposing no_repeats(ℤ List;v)
4. p : iPolynomial()
5. no_repeats(ℤ List;[u / v])
6. f : ℤ ⟶ ℤ
⊢ int_term_value(f;ipolynomial-term(filter(λm.((list-deq(IntDeq) u (snd(m))) ∨bsnd(m) ∈b v);p)))
= (int_term_value(f;ipolynomial-term(filter(λm.(list-deq(IntDeq) u (snd(m)));p)))
+ int_term_value(f;ipolynomial-term(filter(λm.snd(m) ∈b v;p))))
∈ ℤ
2
1. u : ℤ List
2. v : ℤ List List
3. ∀[p:iPolynomial()]
∀f:ℤ ⟶ ℤ
(int_term_value(f;ipolynomial-term(filter(λm.snd(m) ∈b v;p)))
= linearization(p;v) ⋅ map(λvs.accumulate (with value x and list item v):
x * (f v)
over list:
vs
with starting value:
1);v)
∈ ℤ)
supposing no_repeats(ℤ List;v)
4. p : iPolynomial()
5. no_repeats(ℤ List;[u / v])
6. f : ℤ ⟶ ℤ
7. int_term_value(f;ipolynomial-term(filter(λm.((list-deq(IntDeq) u (snd(m))) ∨bsnd(m) ∈b v);p)))
= (int_term_value(f;ipolynomial-term(filter(λm.(list-deq(IntDeq) u (snd(m)));p)))
+ int_term_value(f;ipolynomial-term(filter(λm.snd(m) ∈b v;p))))
∈ ℤ
⊢ int_term_value(f;ipolynomial-term(filter(λm.((list-deq(IntDeq) u (snd(m))) ∨bsnd(m) ∈b v);p)))
= ((poly-coeff-of(u;p) * accumulate (with value x and list item v): x * (f v)over list: uwith starting value: 1))
+ int_term_value(f;ipolynomial-term(filter(λm.snd(m) ∈b v;p))))
∈ ℤ
Latex:
Latex:
1. u : \mBbbZ{} List
2. v : \mBbbZ{} List List
3. \mforall{}[p:iPolynomial()]
\mforall{}f:\mBbbZ{} {}\mrightarrow{} \mBbbZ{}
(int\_term\_value(f;ipolynomial-term(filter(\mlambda{}m.snd(m) \mmember{}\msubb{} v;p)))
= linearization(p;v) \mcdot{} map(\mlambda{}vs.accumulate (with value x and list item v):
x * (f v)
over list:
vs
with starting value:
1);v))
supposing no\_repeats(\mBbbZ{} List;v)
4. p : iPolynomial()
5. no\_repeats(\mBbbZ{} List;[u / v])
6. f : \mBbbZ{} {}\mrightarrow{} \mBbbZ{}
\mvdash{} int\_term\_value(f;ipolynomial-term(filter(\mlambda{}m.((list-deq(IntDeq) u (snd(m))) \mvee{}\msubb{}snd(m) \mmember{}\msubb{} v);p)))
= ((poly-coeff-of(u;p)
* accumulate (with value x and list item v):
x * (f v)
over list:
u
with starting value:
1))
+ int\_term\_value(f;ipolynomial-term(filter(\mlambda{}m.snd(m) \mmember{}\msubb{} v;p))))
By
Latex:
Assert \mkleeneopen{}int\_term\_value(f;ipolynomial-term(filter(\mlambda{}m.((list-deq(IntDeq) u (snd(m))) \mvee{}\msubb{}snd(m) \mmember{}\msubb{} v);
p)))
= (int\_term\_value(f;ipolynomial-term(filter(\mlambda{}m.(list-deq(IntDeq) u (snd(m)));p)))
+ int\_term\_value(f;ipolynomial-term(filter(\mlambda{}m.snd(m) \mmember{}\msubb{} v;p))))\mkleeneclose{}\mcdot{}
Home
Index