Step
*
2
1
1
1
1
1
of Lemma
linearization-value
1. L : ℤ List List
2. p : iPolynomial()
3. ∀i:ℕ||p||. (snd(p[i]) ∈ L)
4. no_repeats(ℤ List;L)
5. ∀f:ℤ ⟶ ℤ
(int_term_value(f;ipolynomial-term(filter(λm.snd(m) ∈b L;p)))
= linearization(p;L) ⋅ map(λvs.accumulate (with value x and list item v):
x * (f v)
over list:
vs
with starting value:
1);L)
∈ ℤ)
6. f : ℤ ⟶ ℤ
7. int_term_value(f;ipolynomial-term(filter(λm.snd(m) ∈b L;p)))
= linearization(p;L) ⋅ map(λvs.accumulate (with value x and list item v):
x * (f v)
over list:
vs
with starting value:
1);L)
∈ ℤ
8. i : ℕ||p||
9. i@0 : ℕ
10. i@0 < ||L||
11. (snd(p[i])) = L[i@0] ∈ (ℤ List)
⊢ ↑snd(p[i]) ∈b L
BY
{ TACTIC:(RevHypSubst' (-1) 0 THEN Auto) }
Latex:
Latex:
1. L : \mBbbZ{} List List
2. p : iPolynomial()
3. \mforall{}i:\mBbbN{}||p||. (snd(p[i]) \mmember{} L)
4. no\_repeats(\mBbbZ{} List;L)
5. \mforall{}f:\mBbbZ{} {}\mrightarrow{} \mBbbZ{}
(int\_term\_value(f;ipolynomial-term(filter(\mlambda{}m.snd(m) \mmember{}\msubb{} L;p)))
= linearization(p;L) \mcdot{} map(\mlambda{}vs.accumulate (with value x and list item v):
x * (f v)
over list:
vs
with starting value:
1);L))
6. f : \mBbbZ{} {}\mrightarrow{} \mBbbZ{}
7. int\_term\_value(f;ipolynomial-term(filter(\mlambda{}m.snd(m) \mmember{}\msubb{} L;p)))
= linearization(p;L) \mcdot{} map(\mlambda{}vs.accumulate (with value x and list item v):
x * (f v)
over list:
vs
with starting value:
1);L)
8. i : \mBbbN{}||p||
9. i@0 : \mBbbN{}
10. i@0 < ||L||
11. (snd(p[i])) = L[i@0]
\mvdash{} \muparrow{}snd(p[i]) \mmember{}\msubb{} L
By
Latex:
TACTIC:(RevHypSubst' (-1) 0 THEN Auto)
Home
Index