Nuprl Lemma : poly-coeff-of_wf

[vs:ℤ List]. ∀[p:iPolynomial()].  (poly-coeff-of(vs;p) ∈ ℤ)


Proof




Definitions occuring in Statement :  poly-coeff-of: poly-coeff-of(vs;p) iPolynomial: iPolynomial() list: List uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T poly-coeff-of: poly-coeff-of(vs;p) so_lambda: so_lambda(x,y,z.t[x; y; z]) iMonomial: iMonomial() int_nzero: -o so_apply: x[s1;s2;s3] iPolynomial: iPolynomial()
Lemmas referenced :  list_ind_wf iMonomial_wf ifthenelse_wf intlex_wf list_wf iPolynomial_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis intEquality natural_numberEquality lambdaEquality spreadEquality hypothesisEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[vs:\mBbbZ{}  List].  \mforall{}[p:iPolynomial()].    (poly-coeff-of(vs;p)  \mmember{}  \mBbbZ{})



Date html generated: 2016_05_14-AM-07_10_38
Last ObjectModification: 2015_12_26-PM-01_07_00

Theory : omega


Home Index