Nuprl Lemma : poly-coeff-of_wf
∀[vs:ℤ List]. ∀[p:iPolynomial()].  (poly-coeff-of(vs;p) ∈ ℤ)
Proof
Definitions occuring in Statement : 
poly-coeff-of: poly-coeff-of(vs;p)
, 
iPolynomial: iPolynomial()
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
poly-coeff-of: poly-coeff-of(vs;p)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
iMonomial: iMonomial()
, 
int_nzero: ℤ-o
, 
so_apply: x[s1;s2;s3]
, 
iPolynomial: iPolynomial()
Lemmas referenced : 
list_ind_wf, 
iMonomial_wf, 
ifthenelse_wf, 
intlex_wf, 
list_wf, 
iPolynomial_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
intEquality, 
natural_numberEquality, 
lambdaEquality, 
spreadEquality, 
hypothesisEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[vs:\mBbbZ{}  List].  \mforall{}[p:iPolynomial()].    (poly-coeff-of(vs;p)  \mmember{}  \mBbbZ{})
Date html generated:
2016_05_14-AM-07_10_38
Last ObjectModification:
2015_12_26-PM-01_07_00
Theory : omega
Home
Index