Nuprl Lemma : intlex_wf

[l1,l2:ℤ List].  (l1 ≤_lex l2 ∈ 𝔹)


Proof




Definitions occuring in Statement :  intlex: l1 ≤_lex l2 list: List bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T intlex: l1 ≤_lex l2 has-value: (a)↓ uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q subtype_rel: A ⊆B prop: bfalse: ff
Lemmas referenced :  value-type-has-value nat_wf set-value-type le_wf int-value-type length_wf_nat bor_wf lt_int_wf length_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int intlex-aux_wf equal-wf-base list_subtype_base int_subtype_base equal_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule callbyvalueReduce extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination intEquality lambdaEquality natural_numberEquality hypothesisEquality because_Cache lambdaFormation unionElimination equalityElimination productElimination dependent_set_memberEquality equalitySymmetry baseApply closedConclusion baseClosed applyEquality equalityTransitivity dependent_functionElimination independent_functionElimination axiomEquality isect_memberEquality

Latex:
\mforall{}[l1,l2:\mBbbZ{}  List].    (l1  \mleq{}\_lex  l2  \mmember{}  \mBbbB{})



Date html generated: 2017_09_29-PM-05_49_00
Last ObjectModification: 2017_07_26-PM-01_37_22

Theory : list_0


Home Index