Nuprl Lemma : polynomial-mon-vars_wf

[init:ℤ List List]. ∀[p:(Top × (ℤ List)) List].  (polynomial-mon-vars(init;p) ∈ ℤ List List)


Proof




Definitions occuring in Statement :  polynomial-mon-vars: polynomial-mon-vars(init;p) list: List uall: [x:A]. B[x] top: Top member: t ∈ T product: x:A × B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T polynomial-mon-vars: polynomial-mon-vars(init;p) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  list_accum_wf top_wf list_wf insert_wf list-deq_wf int-deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin productEquality hypothesis intEquality hypothesisEquality lambdaEquality spreadEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[init:\mBbbZ{}  List  List].  \mforall{}[p:(Top  \mtimes{}  (\mBbbZ{}  List))  List].    (polynomial-mon-vars(init;p)  \mmember{}  \mBbbZ{}  List  List)



Date html generated: 2016_05_14-AM-07_09_57
Last ObjectModification: 2015_12_26-PM-01_07_33

Theory : omega


Home Index