Nuprl Lemma : satisfies-combine-pcs

f:ℤ ⟶ ℤ. ∀A,B:polynomial-constraints().
  (satisfies-poly-constraints(f;combine-pcs(A;B)) ⇐⇒ satisfies-poly-constraints(f;A) ∧ satisfies-poly-constraints(f;B))


Proof




Definitions occuring in Statement :  combine-pcs: combine-pcs(X;Y) satisfies-poly-constraints: satisfies-poly-constraints(f;X) polynomial-constraints: polynomial-constraints() all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] polynomial-constraints: polynomial-constraints() satisfies-poly-constraints: satisfies-poly-constraints(f;X) combine-pcs: combine-pcs(X;Y) iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] iPolynomial: iPolynomial() so_apply: x[s] rev_implies:  Q
Lemmas referenced :  polynomial-constraints_wf iff_wf append_wf equal_wf l_all_append le_wf ipolynomial-term_wf int_term_value_wf equal-wf-T-base l_member_wf iPolynomial_wf l_all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin sqequalRule cut independent_pairFormation hypothesis productEquality lemma_by_obid isectElimination hypothesisEquality lambdaEquality setElimination rename intEquality baseClosed setEquality because_Cache natural_numberEquality addLevel impliesFunctionality dependent_functionElimination independent_functionElimination andLevelFunctionality functionEquality

Latex:
\mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}.  \mforall{}A,B:polynomial-constraints().
    (satisfies-poly-constraints(f;combine-pcs(A;B))
    \mLeftarrow{}{}\mRightarrow{}  satisfies-poly-constraints(f;A)  \mwedge{}  satisfies-poly-constraints(f;B))



Date html generated: 2016_05_14-AM-07_08_11
Last ObjectModification: 2016_01_14-PM-08_41_20

Theory : omega


Home Index