Step
*
2
1
1
2
1
of Lemma
satisfies-gcd-reduce-ineq-constraints
1. n : ℕ+
2. xs : {L:ℤ List| ||L|| = n ∈ ℤ}
3. 0 < ||xs|| ∧ (hd(xs) = 1 ∈ ℤ)
4. [%4] : ||[]|| = n ∈ ℤ
5. v : {L:ℤ List| ||L|| = n ∈ ℤ} List
6. ∀sat:{L:ℤ List| ||L|| = n ∈ ℤ} List
((↑isl(gcd-reduce-ineq-constraints(sat;v)))
⇒ (∀as∈outl(gcd-reduce-ineq-constraints(sat;v)).xs ⋅ as ≥0)
⇒ (∀as∈v.xs ⋅ as ≥0))
7. sat : {L:ℤ List| ||L|| = n ∈ ℤ} List
⊢ (↑isl(gcd-reduce-ineq-constraints(sat;[[] / v])))
⇒ (∀as∈outl(gcd-reduce-ineq-constraints(sat;[[] / v])).xs ⋅ as ≥0)
⇒ (∀as∈[[] / v].xs ⋅ as ≥0)
BY
{ TACTIC:(Assert ⌜False⌝⋅ THEN Auto THEN Unhide THEN Reduce 5 THEN Auto) }
Latex:
Latex:
1. n : \mBbbN{}\msupplus{}
2. xs : \{L:\mBbbZ{} List| ||L|| = n\}
3. 0 < ||xs|| \mwedge{} (hd(xs) = 1)
4. [\%4] : ||[]|| = n
5. v : \{L:\mBbbZ{} List| ||L|| = n\} List
6. \mforall{}sat:\{L:\mBbbZ{} List| ||L|| = n\} List
((\muparrow{}isl(gcd-reduce-ineq-constraints(sat;v)))
{}\mRightarrow{} (\mforall{}as\mmember{}outl(gcd-reduce-ineq-constraints(sat;v)).xs \mcdot{} as \mgeq{}0)
{}\mRightarrow{} (\mforall{}as\mmember{}v.xs \mcdot{} as \mgeq{}0))
7. sat : \{L:\mBbbZ{} List| ||L|| = n\} List
\mvdash{} (\muparrow{}isl(gcd-reduce-ineq-constraints(sat;[[] / v])))
{}\mRightarrow{} (\mforall{}as\mmember{}outl(gcd-reduce-ineq-constraints(sat;[[] / v])).xs \mcdot{} as \mgeq{}0)
{}\mRightarrow{} (\mforall{}as\mmember{}[[] / v].xs \mcdot{} as \mgeq{}0)
By
Latex:
TACTIC:(Assert \mkleeneopen{}False\mkleeneclose{}\mcdot{} THEN Auto THEN Unhide THEN Reduce 5 THEN Auto)
Home
Index