Step
*
2
2
1
2
2
of Lemma
satisfies-shadow-inequalities
1. n : ℕ
2. ineqs : {L:ℤ List| ||L|| = n ∈ ℤ} List
3. i : ℕ+n
4. xs : ℤ List
5. (∀as∈ineqs.xs ⋅ as ≥0)
6. ∀L:ℤ List. ((L ∈ ineqs)
⇒ i < ||L||)
7. map(λL.L\i;filter(λL.(L[i] =z 0);ineqs)) ∈ ℤ List List
8. valueall-type(ℤ List List)
9. (∀as∈eager-product-map(λas,bs. shadow-vec(i;as;bs);filter(λL.0 <z L[i];ineqs);filter(λL.L[i] <z 0;ineqs))
@ map(λL.L\i;filter(λL.(L[i] =z 0);ineqs)).xs\i ⋅ as ≥0)
⊢ (∀as∈eager-product-map(λas,bs. shadow-vec(i;as;bs);filter(λL.0 <z L[i];ineqs);filter(λL.L[i] <z 0;ineqs))
@ map(λL.L\i;filter(λL.(L[i] =z 0);ineqs)).xs\i ⋅ as ≥0)
BY
{ Trivial }
Latex:
Latex:
1. n : \mBbbN{}
2. ineqs : \{L:\mBbbZ{} List| ||L|| = n\} List
3. i : \mBbbN{}\msupplus{}n
4. xs : \mBbbZ{} List
5. (\mforall{}as\mmember{}ineqs.xs \mcdot{} as \mgeq{}0)
6. \mforall{}L:\mBbbZ{} List. ((L \mmember{} ineqs) {}\mRightarrow{} i < ||L||)
7. map(\mlambda{}L.L\mbackslash{}i;filter(\mlambda{}L.(L[i] =\msubz{} 0);ineqs)) \mmember{} \mBbbZ{} List List
8. valueall-type(\mBbbZ{} List List)
9. (\mforall{}as\mmember{}eager-product-map(\mlambda{}as,bs. shadow-vec(i;as;bs);filter(\mlambda{}L.0 <z L[i];ineqs);filter(\mlambda{}L.L[i] <z 0\000C;
ineqs))
@ map(\mlambda{}L.L\mbackslash{}i;filter(\mlambda{}L.(L[i] =\msubz{} 0);ineqs)).xs\mbackslash{}i \mcdot{} as \mgeq{}0)
\mvdash{} (\mforall{}as\mmember{}eager-product-map(\mlambda{}as,bs. shadow-vec(i;as;bs);filter(\mlambda{}L.0 <z L[i];ineqs);filter(\mlambda{}L.L[i] <z 0;
ineqs))
@ map(\mlambda{}L.L\mbackslash{}i;filter(\mlambda{}L.(L[i] =\msubz{} 0);ineqs)).xs\mbackslash{}i \mcdot{} as \mgeq{}0)
By
Latex:
Trivial
Home
Index