Nuprl Lemma : bottom-pair-member-approx-type
∀[A,B:Type].  (A ⇒ B ⇒ (<⊥, ⊥> ∈ approx-type(A × B)))
Proof
Definitions occuring in Statement : 
approx-type: approx-type(T), 
bottom: ⊥, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
pair: <a, b>, 
product: x:A × B[x], 
universe: Type
Definitions unfolded in proof : 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
and: P ∧ Q, 
uiff: uiff(P;Q), 
all: ∀x:A. B[x], 
squash: ↓T, 
prop: ℙ, 
false: False, 
not: ¬A, 
cand: A c∧ B, 
exists: ∃x:A. B[x]
Lemmas referenced : 
approx-type_wf, 
member-approx-type, 
equal-wf-base, 
sqle_wf_base, 
is-exception_wf, 
has-value_wf_base, 
exception-not-bottom, 
bottom_diverge
Rules used in proof : 
isect_memberEquality, 
universeEquality, 
because_Cache, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
dependent_functionElimination, 
lambdaEquality, 
sqequalRule, 
hypothesis, 
hypothesisEquality, 
cumulativity, 
productEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
pointwiseFunctionalityForEquality, 
rename, 
lambdaFormation, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_isectElimination, 
productElimination, 
baseClosed, 
imageMemberEquality, 
independent_pairEquality, 
independent_pairFormation, 
voidElimination, 
independent_functionElimination, 
sqleRule, 
divergentSqle, 
closedConclusion, 
baseApply, 
dependent_pairFormation
Latex:
\mforall{}[A,B:Type].    (A  {}\mRightarrow{}  B  {}\mRightarrow{}  (<\mbot{},  \mbot{}>  \mmember{}  approx-type(A  \mtimes{}  B)))
Date html generated:
2018_05_21-PM-00_05_27
Last ObjectModification:
2017_12_30-PM-02_28_40
Theory : partial_1
Home
Index