Nuprl Lemma : bottom_wf-partial

[A:Type]. ⊥ ∈ partial(A) supposing value-type(A)


Proof




Definitions occuring in Statement :  partial: partial(T) bottom: value-type: value-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a not: ¬A implies:  Q false: False prop:
Lemmas referenced :  value-type_wf not-is-exception-bottom has-value_wf_base bottom_diverge base-member-partial
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis baseClosed independent_functionElimination voidElimination sqequalRule axiomEquality equalityTransitivity equalitySymmetry because_Cache isect_memberEquality universeEquality

Latex:
\mforall{}[A:Type].  \mbot{}  \mmember{}  partial(A)  supposing  value-type(A)



Date html generated: 2016_05_14-AM-06_09_46
Last ObjectModification: 2016_01_06-PM-06_43_32

Theory : partial_1


Home Index