Nuprl Lemma : bottom_wf-partial
∀[A:Type]. ⊥ ∈ partial(A) supposing value-type(A)
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
bottom: ⊥
, 
value-type: value-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
Lemmas referenced : 
value-type_wf, 
not-is-exception-bottom, 
has-value_wf_base, 
bottom_diverge, 
base-member-partial
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
baseClosed, 
independent_functionElimination, 
voidElimination, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[A:Type].  \mbot{}  \mmember{}  partial(A)  supposing  value-type(A)
Date html generated:
2016_05_14-AM-06_09_46
Last ObjectModification:
2016_01_06-PM-06_43_32
Theory : partial_1
Home
Index