Nuprl Lemma : uand-subtype1
∀[A,B:Type]. ∀[z:uand(A;B)].  (z ∈ A)
Proof
Definitions occuring in Statement : 
uand: uand(A;B), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uand: uand(A;B), 
has-value: (a)↓, 
subtype_rel: A ⊆r B, 
prop: ℙ
Lemmas referenced : 
uand_wf, 
has-value_wf_base, 
is-exception_wf, 
sqle_wf_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
baseClosed, 
sqequalRule, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality, 
applyEquality, 
lambdaEquality, 
divergentSqle, 
sqleReflexivity, 
rename, 
isectEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[z:uand(A;B)].    (z  \mmember{}  A)
 Date html generated: 
2019_06_20-AM-11_29_54
 Last ObjectModification: 
2018_08_21-AM-00_01_19
Theory : per!type
Home
Index