Step * of Lemma equiv_rel_per-quotient

[T:Type]. ∀[E1,E2:T ⟶ T ⟶ 𝔹].
  (EquivRel(T;x,y.↑E2[x;y])
   EquivRel(T;x,y.↑E1[x;y])
   (∀x,y:T.  ((↑E2[x;y])  (↑E1[x;y])))
   EquivRel(x,y:T/per/(↑E2[x;y]);x,y.↑E1[x;y]))
BY
((Unfold `per-quotient` THEN Fold `quotient` 0) THEN InstLemma `equiv_rel_quotient` [] THEN Trivial) }


Latex:


Latex:
\mforall{}[T:Type].  \mforall{}[E1,E2:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].
    (EquivRel(T;x,y.\muparrow{}E2[x;y])
    {}\mRightarrow{}  EquivRel(T;x,y.\muparrow{}E1[x;y])
    {}\mRightarrow{}  (\mforall{}x,y:T.    ((\muparrow{}E2[x;y])  {}\mRightarrow{}  (\muparrow{}E1[x;y])))
    {}\mRightarrow{}  EquivRel(x,y:T/per/(\muparrow{}E2[x;y]);x,y.\muparrow{}E1[x;y]))


By


Latex:
((Unfold  `per-quotient`  0  THEN  Fold  `quotient`  0)
  THEN  InstLemma  `equiv\_rel\_quotient`  []
  THEN  Trivial)




Home Index