Nuprl Lemma : subtype_per-quotient
∀[T:Type]. ∀[E:T ⟶ T ⟶ ℙ]. T ⊆r (x,y:T/per/E[x;y]) supposing EquivRel(T;x,y.E[x;y])
Proof
Definitions occuring in Statement :
per-quotient: x,y:T/per/E[x; y]
,
equiv_rel: EquivRel(T;x,y.E[x; y])
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s1;s2]
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
,
prop: ℙ
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
per-quotient: x,y:T/per/E[x; y]
,
and: P ∧ Q
,
cand: A c∧ B
,
guard: {T}
,
equiv_rel: EquivRel(T;x,y.E[x; y])
,
refl: Refl(T;x,y.E[x; y])
,
all: ∀x:A. B[x]
,
squash: ↓T
,
true: True
Lemmas referenced :
equiv_rel_wf,
per-quotient_wf,
member_wf,
squash_wf,
true_wf,
and_wf,
equal_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lambdaEquality,
pointwiseFunctionality,
hypothesisEquality,
sqequalRule,
axiomEquality,
hypothesis,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
applyEquality,
isect_memberEquality,
because_Cache,
equalityTransitivity,
equalitySymmetry,
functionEquality,
cumulativity,
universeEquality,
pertypeMemberEquality,
independent_isectElimination,
independent_pairFormation,
productElimination,
dependent_functionElimination,
imageElimination,
natural_numberEquality,
imageMemberEquality,
baseClosed,
hyp_replacement,
dependent_set_memberEquality,
applyLambdaEquality,
setElimination,
rename
Latex:
\mforall{}[T:Type]. \mforall{}[E:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}]. T \msubseteq{}r (x,y:T/per/E[x;y]) supposing EquivRel(T;x,y.E[x;y])
Date html generated:
2019_06_20-PM-00_33_32
Last ObjectModification:
2018_09_21-AM-11_47_10
Theory : per-quotient
Home
Index