Nuprl Lemma : injective-quotient-inject
∀[T,S:Type]. ∀[f:T ⟶ S].  Inj(T//x.f[x];S;λx.f[x])
Proof
Definitions occuring in Statement : 
injective-quotient: T//x.f[x], 
inject: Inj(A;B;f), 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
so_apply: x[s], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
guard: {T}, 
inject: Inj(A;B;f), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
so_lambda: λ2x.t[x], 
injective-quotient: T//x.f[x], 
quotient: x,y:A//B[x; y], 
and: P ∧ Q, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
uimplies: b supposing a, 
equiv_rel: EquivRel(T;x,y.E[x; y]), 
refl: Refl(T;x,y.E[x; y]), 
sym: Sym(T;x,y.E[x; y]), 
trans: Trans(T;x,y.E[x; y])
Lemmas referenced : 
injective-quotient-typing, 
istype-universe, 
injective-quotient_wf, 
quotient-member-eq, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
introduction, 
extract_by_obid, 
Error :isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
Error :functionIsType, 
Error :universeIsType, 
Error :inhabitedIsType, 
instantiate, 
universeEquality, 
Error :lambdaFormation_alt, 
Error :equalityIstype, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
Error :lambdaEquality_alt, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
promote_hyp, 
productElimination, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
Error :productIsType, 
sqequalBase, 
independent_pairFormation
Latex:
\mforall{}[T,S:Type].  \mforall{}[f:T  {}\mrightarrow{}  S].    Inj(T//x.f[x];S;\mlambda{}x.f[x])
Date html generated:
2019_06_20-PM-00_33_07
Last ObjectModification:
2018_12_19-PM-05_30_19
Theory : quot_1
Home
Index