Nuprl Lemma : not-has-value-decidable-quot
∀[E:(∀x:Base. ((x)↓ ∨ (¬(x)↓))) ⟶ (∀x:Base. ((x)↓ ∨ (¬(x)↓))) ⟶ ℙ]
  ¬(f,g:∀x:Base. ((x)↓ ∨ (¬(x)↓))//E[f;g]) supposing EquivRel(∀x:Base. ((x)↓ ∨ (¬(x)↓));f,g.E[f;g])
Proof
Definitions occuring in Statement : 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
quotient: x,y:A//B[x; y]
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
or: P ∨ Q
, 
function: x:A ⟶ B[x]
, 
base: Base
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
or: P ∨ Q
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
quotient_wf, 
all_wf, 
base_wf, 
or_wf, 
has-value_wf_base, 
not_wf, 
equiv_rel_wf, 
false_wf, 
equal_wf, 
equal-wf-base, 
not_has-value_decidable_on_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
rename, 
because_Cache, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
lemma_by_obid, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
applyEquality, 
independent_isectElimination, 
dependent_functionElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
productElimination, 
productEquality
Latex:
\mforall{}[E:(\mforall{}x:Base.  ((x)\mdownarrow{}  \mvee{}  (\mneg{}(x)\mdownarrow{})))  {}\mrightarrow{}  (\mforall{}x:Base.  ((x)\mdownarrow{}  \mvee{}  (\mneg{}(x)\mdownarrow{})))  {}\mrightarrow{}  \mBbbP{}]
    \mneg{}(f,g:\mforall{}x:Base.  ((x)\mdownarrow{}  \mvee{}  (\mneg{}(x)\mdownarrow{}))//E[f;g])  supposing  EquivRel(\mforall{}x:Base.  ((x)\mdownarrow{}  \mvee{}  (\mneg{}(x)\mdownarrow{}));f,g.E[f;g])
Date html generated:
2016_05_14-AM-06_08_32
Last ObjectModification:
2015_12_26-AM-11_48_21
Theory : quot_1
Home
Index