Nuprl Lemma : anti_sym_functionality_wrt_iff

[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ].
  uiff(AntiSym(T;x,y.R[x;y]);AntiSym(T;x,y.R'[x;y])) supposing ∀x,y:T.  (R[x;y] ⇐⇒ R'[x;y])


Proof




Definitions occuring in Statement :  anti_sym: AntiSym(T;x,y.R[x; y]) uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T all: x:A. B[x] implies:  Q prop: so_apply: x[s1;s2] subtype_rel: A ⊆B uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q guard: {T} anti_sym: AntiSym(T;x,y.R[x; y])
Lemmas referenced :  all_wf equal_wf uiff_wf iff_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation isect_memberFormation introduction lambdaFormation hypothesis applyEquality functionExtensionality hypothesisEquality cumulativity sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin axiomEquality universeEquality because_Cache extract_by_obid isectElimination functionEquality addLevel productElimination independent_isectElimination allFunctionality independent_functionElimination independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type].  \mforall{}[R,R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    uiff(AntiSym(T;x,y.R[x;y]);AntiSym(T;x,y.R'[x;y]))  supposing  \mforall{}x,y:T.    (R[x;y]  \mLeftarrow{}{}\mRightarrow{}  R'[x;y])



Date html generated: 2017_04_14-AM-07_37_50
Last ObjectModification: 2017_02_27-PM-03_10_01

Theory : rel_1


Home Index