Nuprl Lemma : anti_sym_functionality_wrt_iff
∀[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ].
  uiff(AntiSym(T;x,y.R[x;y]);AntiSym(T;x,y.R'[x;y])) supposing ∀x,y:T.  (R[x;y] 
⇐⇒ R'[x;y])
Proof
Definitions occuring in Statement : 
anti_sym: AntiSym(T;x,y.R[x; y])
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
, 
anti_sym: AntiSym(T;x,y.R[x; y])
Lemmas referenced : 
all_wf, 
equal_wf, 
uiff_wf, 
iff_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
lambdaFormation, 
hypothesis, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
cumulativity, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
axiomEquality, 
universeEquality, 
because_Cache, 
extract_by_obid, 
isectElimination, 
functionEquality, 
addLevel, 
productElimination, 
independent_isectElimination, 
allFunctionality, 
independent_functionElimination, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[T:Type].  \mforall{}[R,R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    uiff(AntiSym(T;x,y.R[x;y]);AntiSym(T;x,y.R'[x;y]))  supposing  \mforall{}x,y:T.    (R[x;y]  \mLeftarrow{}{}\mRightarrow{}  R'[x;y])
Date html generated:
2017_04_14-AM-07_37_50
Last ObjectModification:
2017_02_27-PM-03_10_01
Theory : rel_1
Home
Index