Nuprl Lemma : approx-per-for-base

[T:Type]. ∀x,y:Base.  approx-per(T;x;y) supposing y ∈ supposing T ⊆Base


Proof




Definitions occuring in Statement :  approx-per: approx-per(T;x;y) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] base: Base universe: Type equal: t ∈ T
Definitions unfolded in proof :  implies:  Q prop: exists: x:A. B[x] cand: c∧ B and: P ∧ Q approx-per: approx-per(T;x;y) all: x:A. B[x] subtype_rel: A ⊆B member: t ∈ T uimplies: supposing a uall: [x:A]. B[x]
Lemmas referenced :  subtype_rel_wf base_wf equal-wf-base-T is-exception_wf has-value_wf_base equal_wf and_wf equal-wf-base sqle_wf_base
Rules used in proof :  universeEquality cumulativity levelHypothesis addLevel applyEquality setElimination applyLambdaEquality dependent_set_memberEquality hyp_replacement productElimination hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid productEquality equalitySymmetry equalityTransitivity sqleReflexivity divergentSqle because_Cache dependent_pairFormation independent_pairFormation lambdaFormation rename thin hypothesis axiomEquality sqequalRule introduction cut isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type].  \mforall{}x,y:Base.    approx-per(T;x;y)  supposing  x  =  y  supposing  T  \msubseteq{}r  Base



Date html generated: 2018_05_21-PM-00_04_30
Last ObjectModification: 2017_12_30-PM-02_05_27

Theory : rel_1


Home Index