Nuprl Lemma : equiv_rel_isect2

[A,B:Type].  ∀E:A ⟶ A ⟶ ℙ(EquivRel(A;x,y.E[x;y])  EquivRel(A ⋂ B;x,y.E[x;y]))


Proof




Definitions occuring in Statement :  equiv_rel: EquivRel(T;x,y.E[x; y]) isect2: T1 ⋂ T2 uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: uimplies: supposing a so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  equiv_rel_subtype isect2_wf isect2_subtype_rel equiv_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination because_Cache independent_functionElimination sqequalRule lambdaEquality applyEquality functionEquality cumulativity universeEquality

Latex:
\mforall{}[A,B:Type].    \mforall{}E:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}.  (EquivRel(A;x,y.E[x;y])  {}\mRightarrow{}  EquivRel(A  \mcap{}  B;x,y.E[x;y]))



Date html generated: 2016_05_13-PM-04_15_03
Last ObjectModification: 2015_12_26-AM-11_30_01

Theory : rel_1


Home Index