Nuprl Lemma : equiv_rel_isect2
∀[A,B:Type].  ∀E:A ⟶ A ⟶ ℙ. (EquivRel(A;x,y.E[x;y]) 
⇒ EquivRel(A ⋂ B;x,y.E[x;y]))
Proof
Definitions occuring in Statement : 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
isect2: T1 ⋂ T2
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uimplies: b supposing a
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
equiv_rel_subtype, 
isect2_wf, 
isect2_subtype_rel, 
equiv_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
because_Cache, 
independent_functionElimination, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[A,B:Type].    \mforall{}E:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}.  (EquivRel(A;x,y.E[x;y])  {}\mRightarrow{}  EquivRel(A  \mcap{}  B;x,y.E[x;y]))
Date html generated:
2016_05_13-PM-04_15_03
Last ObjectModification:
2015_12_26-AM-11_30_01
Theory : rel_1
Home
Index