Nuprl Lemma : equiv_rel_subtyping

[T:Type]. ∀[R:T ⟶ T ⟶ Type]. ∀[Q:T ⟶ ℙ].  (EquivRel(T;x,y.R[x;y])  EquivRel({z:T| Q[z]} ;x,y.R[x;y]))


Proof




Definitions occuring in Statement :  equiv_rel: EquivRel(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] so_apply: x[s] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q subtype_rel: A ⊆B member: t ∈ T so_apply: x[s] prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a
Lemmas referenced :  equiv_rel_subtype equiv_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lambdaEquality setElimination thin rename hypothesisEquality setEquality applyEquality hypothesis sqequalHypSubstitution sqequalRule universeEquality lemma_by_obid isectElimination because_Cache independent_isectElimination independent_functionElimination functionEquality cumulativity

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  Type].  \mforall{}[Q:T  {}\mrightarrow{}  \mBbbP{}].    (EquivRel(T;x,y.R[x;y])  {}\mRightarrow{}  EquivRel(\{z:T|  Q[z]\}  ;x,y.R\000C[x;y]))



Date html generated: 2016_05_13-PM-04_15_04
Last ObjectModification: 2015_12_26-AM-11_30_03

Theory : rel_1


Home Index