Nuprl Lemma : equiv_rel_subtyping
∀[T:Type]. ∀[R:T ⟶ T ⟶ Type]. ∀[Q:T ⟶ ℙ].  (EquivRel(T;x,y.R[x;y]) 
⇒ EquivRel({z:T| Q[z]} x,y.R[x;y]))
Proof
Definitions occuring in Statement : 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
so_apply: x[s]
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
Lemmas referenced : 
equiv_rel_subtype, 
equiv_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lambdaEquality, 
setElimination, 
thin, 
rename, 
hypothesisEquality, 
setEquality, 
applyEquality, 
hypothesis, 
sqequalHypSubstitution, 
sqequalRule, 
universeEquality, 
lemma_by_obid, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination, 
functionEquality, 
cumulativity
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  Type].  \mforall{}[Q:T  {}\mrightarrow{}  \mBbbP{}].    (EquivRel(T;x,y.R[x;y])  {}\mRightarrow{}  EquivRel(\{z:T|  Q[z]\}  ;x,y.R\000C[x;y]))
Date html generated:
2016_05_13-PM-04_15_04
Last ObjectModification:
2015_12_26-AM-11_30_03
Theory : rel_1
Home
Index