Step
*
of Lemma
greatest-lower-bound-assoc
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
∀[a,b,c,x,y,u1,u2:T].
(u1 = u2 ∈ T) supposing
(greatest-lower-bound(T;x,y.R[x;y];a;b;x) and
greatest-lower-bound(T;x,y.R[x;y];x;c;u1) and
greatest-lower-bound(T;x,y.R[x;y];b;c;y) and
greatest-lower-bound(T;x,y.R[x;y];a;y;u2))
supposing Order(T;x,y.R[x;y])
BY
{ Auto }
1
1. T : Type
2. R : T ⟶ T ⟶ ℙ
3. Order(T;x,y.R[x;y])
4. a : T
5. b : T
6. c : T
7. x : T
8. y : T
9. u1 : T
10. u2 : T
11. greatest-lower-bound(T;x,y.R[x;y];a;y;u2)
12. greatest-lower-bound(T;x,y.R[x;y];b;c;y)
13. greatest-lower-bound(T;x,y.R[x;y];x;c;u1)
14. greatest-lower-bound(T;x,y.R[x;y];a;b;x)
⊢ u1 = u2 ∈ T
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}[R:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}].
\mforall{}[a,b,c,x,y,u1,u2:T].
(u1 = u2) supposing
(greatest-lower-bound(T;x,y.R[x;y];a;b;x) and
greatest-lower-bound(T;x,y.R[x;y];x;c;u1) and
greatest-lower-bound(T;x,y.R[x;y];b;c;y) and
greatest-lower-bound(T;x,y.R[x;y];a;y;u2))
supposing Order(T;x,y.R[x;y])
By
Latex:
Auto
Home
Index