Nuprl Lemma : strict_part_irrefl
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[a,b:T].  ¬(a = b ∈ T) supposing strict_part(x,y.R[x;y];a;b)
Proof
Definitions occuring in Statement : 
strict_part: strict_part(x,y.R[x; y];a;b), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s1;s2], 
not: ¬A, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
not: ¬A, 
strict_part: strict_part(x,y.R[x; y];a;b), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
implies: P ⇒ Q, 
false: False, 
and: P ∧ Q, 
prop: ℙ, 
so_apply: x[s1;s2], 
subtype_rel: A ⊆r B, 
guard: {T}
Lemmas referenced : 
equal_wf, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
productEquality, 
applyEquality, 
functionExtensionality, 
universeEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
voidElimination, 
hyp_replacement, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[a,b:T].    \mneg{}(a  =  b)  supposing  strict\_part(x,y.R[x;y];a;b)
Date html generated:
2017_04_14-AM-07_37_51
Last ObjectModification:
2017_02_27-PM-03_09_48
Theory : rel_1
Home
Index