Nuprl Lemma : uequiv_rel_functionality_wrt_iff

[T,T':Type]. ∀[E:T ⟶ T ⟶ ℙ]. ∀[E':T' ⟶ T' ⟶ ℙ].
  (∀[x,y:T].  (E[x;y] ⇐⇒ E'[x;y]))  (UniformEquivRel(T;x,y.E[x;y]) ⇐⇒ UniformEquivRel(T';x,y.E'[x;y])) 
  supposing T' ∈ Type


Proof




Definitions occuring in Statement :  uequiv_rel: UniformEquivRel(T;x,y.E[x; y]) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T implies:  Q iff: ⇐⇒ Q and: P ∧ Q uequiv_rel: UniformEquivRel(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) so_apply: x[s1;s2] usym: UniformlySym(T;x,y.E[x; y]) rev_implies:  Q subtype_rel: A ⊆B prop: utrans: UniformlyTrans(T;x,y.E[x; y]) so_lambda: λ2y.t[x; y] so_lambda: λ2x.t[x] guard: {T} so_apply: x[s]
Lemmas referenced :  subtype_rel_self uequiv_rel_wf uall_wf iff_wf subtype_rel_weakening ext-eq_weakening equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction axiomEquality hypothesis thin rename lambdaFormation independent_pairFormation sqequalHypSubstitution productElimination promote_hyp isectElimination hyp_replacement hypothesisEquality equalitySymmetry because_Cache independent_functionElimination applyEquality sqequalRule instantiate extract_by_obid lambdaEquality independent_isectElimination universeEquality functionEquality cumulativity

Latex:
\mforall{}[T,T':Type].  \mforall{}[E:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[E':T'  {}\mrightarrow{}  T'  {}\mrightarrow{}  \mBbbP{}].
    (\mforall{}[x,y:T].    (E[x;y]  \mLeftarrow{}{}\mRightarrow{}  E'[x;y]))
    {}\mRightarrow{}  (UniformEquivRel(T;x,y.E[x;y])  \mLeftarrow{}{}\mRightarrow{}  UniformEquivRel(T';x,y.E'[x;y])) 
    supposing  T  =  T'



Date html generated: 2019_06_20-PM-00_29_04
Last ObjectModification: 2018_08_25-AM-08_25_07

Theory : rel_1


Home Index