Nuprl Lemma : ulinorder_le_neg
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (UniformLinorder(T;x,y.R[x;y]) ⇒ (∀[a,b:T].  uiff(¬R[a;b];strict_part(x,y.R[x;y];b;a))))
Proof
Definitions occuring in Statement : 
ulinorder: UniformLinorder(T;x,y.R[x; y]), 
strict_part: strict_part(x,y.R[x; y];a;b), 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s1;s2], 
not: ¬A, 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
member: t ∈ T, 
not: ¬A, 
false: False, 
so_apply: x[s1;s2], 
subtype_rel: A ⊆r B, 
prop: ℙ, 
so_lambda: λ2x y.t[x; y], 
strict_part: strict_part(x,y.R[x; y];a;b), 
urefl: UniformlyRefl(T;x,y.E[x; y]), 
utrans: UniformlyTrans(T;x,y.E[x; y]), 
uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]), 
uorder: UniformOrder(T;x,y.R[x; y]), 
connex: Connex(T;x,y.R[x; y]), 
ulinorder: UniformLinorder(T;x,y.R[x; y]), 
or: P ∨ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
not_wf, 
strict_part_wf, 
ulinorder_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
voidElimination, 
applyEquality, 
functionExtensionality, 
cumulativity, 
hypothesis, 
universeEquality, 
rename, 
extract_by_obid, 
isectElimination, 
independent_functionElimination, 
because_Cache, 
functionEquality, 
productElimination, 
independent_isectElimination, 
unionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (UniformLinorder(T;x,y.R[x;y])  {}\mRightarrow{}  (\mforall{}[a,b:T].    uiff(\mneg{}R[a;b];strict\_part(x,y.R[x;y];b;a))))
 Date html generated: 
2016_10_21-AM-09_43_05
 Last ObjectModification: 
2016_08_01-PM-09_48_48
Theory : rel_1
Home
Index