Nuprl Lemma : ulinorder_lt_neg

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  ((∀x,y:T.  Dec(R[x;y]))  UniformLinorder(T;x,y.R[x;y])  (∀[a,b:T].  uiff(¬strict_part(x,y.R[x;y];a;b);R[b;a])))


Proof




Definitions occuring in Statement :  ulinorder: UniformLinorder(T;x,y.R[x; y]) strict_part: strict_part(x,y.R[x; y];a;b) decidable: Dec(P) uiff: uiff(P;Q) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] not: ¬A implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q ulinorder: UniformLinorder(T;x,y.R[x; y]) and: P ∧ Q connex: Connex(T;x,y.R[x; y]) uorder: UniformOrder(T;x,y.R[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) strict_part: strict_part(x,y.R[x; y];a;b) member: t ∈ T prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) uimplies: supposing a not: ¬A false: False subtype_rel: A ⊆B all: x:A. B[x] decidable: Dec(P) or: P ∨ Q cand: c∧ B
Lemmas referenced :  ulinorder_wf all_wf decidable_wf subtype_rel_self not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  lambdaFormation sqequalHypSubstitution productElimination thin Error :inhabitedIsType,  hypothesisEquality Error :universeIsType,  cut introduction extract_by_obid isectElimination sqequalRule lambdaEquality applyEquality hypothesis Error :functionIsType,  universeEquality independent_pairFormation dependent_functionElimination voidElimination productEquality instantiate rename because_Cache independent_functionElimination independent_isectElimination unionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x,y:T.    Dec(R[x;y]))
    {}\mRightarrow{}  UniformLinorder(T;x,y.R[x;y])
    {}\mRightarrow{}  (\mforall{}[a,b:T].    uiff(\mneg{}strict\_part(x,y.R[x;y];a;b);R[b;a])))



Date html generated: 2019_06_20-PM-00_30_05
Last ObjectModification: 2018_09_26-PM-00_06_21

Theory : rel_1


Home Index