Nuprl Lemma : uorder_split
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  (UniformOrder(T;x,y.R[x;y])
  
⇒ (∀[x,y:T].  Dec(x = y ∈ T))
  
⇒ (∀[a,b:T].  (R[a;b] 
⇐⇒ strict_part(x,y.R[x;y];a;b) ∨ (a = b ∈ T))))
Proof
Definitions occuring in Statement : 
uorder: UniformOrder(T;x,y.R[x; y])
, 
strict_part: strict_part(x,y.R[x; y];a;b)
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
strict_part: strict_part(x,y.R[x; y];a;b)
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
uorder: UniformOrder(T;x,y.R[x; y])
, 
uanti_sym: UniformlyAntiSym(T;x,y.R[x; y])
, 
utrans: UniformlyTrans(T;x,y.E[x; y])
, 
urefl: UniformlyRefl(T;x,y.E[x; y])
, 
member: t ∈ T
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
cand: A c∧ B
, 
not: ¬A
, 
false: False
, 
guard: {T}
, 
uimplies: b supposing a
Lemmas referenced : 
or_wf, 
subtype_rel_self, 
not_wf, 
equal_wf, 
uall_wf, 
decidable_wf, 
uorder_wf, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
productEquality, 
hypothesis, 
instantiate, 
universeEquality, 
Error :inhabitedIsType, 
Error :universeIsType, 
lambdaEquality, 
Error :functionIsType, 
unionElimination, 
inrFormation, 
inlFormation, 
independent_isectElimination, 
independent_functionElimination, 
hyp_replacement, 
equalitySymmetry, 
dependent_set_memberEquality, 
applyLambdaEquality, 
setElimination, 
rename
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (UniformOrder(T;x,y.R[x;y])
    {}\mRightarrow{}  (\mforall{}[x,y:T].    Dec(x  =  y))
    {}\mRightarrow{}  (\mforall{}[a,b:T].    (R[a;b]  \mLeftarrow{}{}\mRightarrow{}  strict\_part(x,y.R[x;y];a;b)  \mvee{}  (a  =  b))))
Date html generated:
2019_06_20-PM-00_29_55
Last ObjectModification:
2018_09_26-PM-00_04_57
Theory : rel_1
Home
Index