Nuprl Lemma : uorder_split

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  (UniformOrder(T;x,y.R[x;y])
   (∀[x,y:T].  Dec(x y ∈ T))
   (∀[a,b:T].  (R[a;b] ⇐⇒ strict_part(x,y.R[x;y];a;b) ∨ (a b ∈ T))))


Proof




Definitions occuring in Statement :  uorder: UniformOrder(T;x,y.R[x; y]) strict_part: strict_part(x,y.R[x; y];a;b) decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] iff: ⇐⇒ Q implies:  Q or: P ∨ Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  strict_part: strict_part(x,y.R[x; y];a;b) uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q uorder: UniformOrder(T;x,y.R[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) member: t ∈ T prop: so_apply: x[s1;s2] rev_implies:  Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] decidable: Dec(P) or: P ∨ Q cand: c∧ B not: ¬A false: False guard: {T} uimplies: supposing a
Lemmas referenced :  or_wf subtype_rel_self not_wf equal_wf uall_wf decidable_wf uorder_wf and_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  lambdaFormation independent_pairFormation sqequalHypSubstitution productElimination thin applyEquality hypothesisEquality cut introduction extract_by_obid isectElimination productEquality hypothesis instantiate universeEquality Error :inhabitedIsType,  Error :universeIsType,  lambdaEquality Error :functionIsType,  unionElimination inrFormation inlFormation independent_isectElimination independent_functionElimination hyp_replacement equalitySymmetry dependent_set_memberEquality applyLambdaEquality setElimination rename

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (UniformOrder(T;x,y.R[x;y])
    {}\mRightarrow{}  (\mforall{}[x,y:T].    Dec(x  =  y))
    {}\mRightarrow{}  (\mforall{}[a,b:T].    (R[a;b]  \mLeftarrow{}{}\mRightarrow{}  strict\_part(x,y.R[x;y];a;b)  \mvee{}  (a  =  b))))



Date html generated: 2019_06_20-PM-00_29_55
Last ObjectModification: 2018_09_26-PM-00_04_57

Theory : rel_1


Home Index