Step
*
2
1
1
1
of Lemma
rel-comp-exp
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. [S] : T ⟶ T ⟶ ℙ
4. n : ℤ
5. n ≠ 0
6. [%1] : 0 < n
7. ∀x,y:T. ((R o S)^n - 1 x y
⇐⇒ if (n - 1 =z 0) then λx,y. (x = y ∈ T) else (R o ((S o R)^n - 1 - 1 o S)) fi x y)
8. x : T
9. y : T
10. (n - 1) = 0 ∈ ℤ
⊢ ∃z:T. ((x (R o S) z) ∧ (z = y ∈ T))
⇐⇒ (R o (λx,y. (x = y ∈ T) o S)) x y
BY
{ (RepUR ``rel-comp`` 0 THEN Auto) }
Latex:
Latex:
1. [T] : Type
2. [R] : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
3. [S] : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
4. n : \mBbbZ{}
5. n \mneq{} 0
6. [\%1] : 0 < n
7. \mforall{}x,y:T.
(rel\_exp(T; (R o S); n - 1) x y
\mLeftarrow{}{}\mRightarrow{} if (n - 1 =\msubz{} 0) then \mlambda{}x,y. (x = y) else (R o (rel\_exp(T; (S o R); n - 1 - 1) o S)) fi x y)
8. x : T
9. y : T
10. (n - 1) = 0
\mvdash{} \mexists{}z:T. ((x (R o S) z) \mwedge{} (z = y)) \mLeftarrow{}{}\mRightarrow{} (R o (\mlambda{}x,y. (x = y) o S)) x y
By
Latex:
(RepUR ``rel-comp`` 0 THEN Auto)
Home
Index