Step
*
2
1
1
2
of Lemma
rel-comp-exp
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. [S] : T ⟶ T ⟶ ℙ
4. n : ℤ
5. n - 1 ≠ 0
6. n ≠ 0
7. [%1] : 0 < n
8. ∀x,y:T. ((R o S)^n - 1 x y
⇐⇒ (R o ((S o R)^n - 1 - 1 o S)) x y)
9. x : T
10. y : T
⊢ ∃z@0:T. ((x (R o S) z@0) ∧ ((R o ((S o R)^n - 1 - 1 o S)) z@0 y))
⇐⇒ (R o (λx,y. ∃z:T. ((x (S o R) z) ∧ (z (S o R)^n - 1 - 1 y)) o S)) x y
BY
{ (Assert ⌜∀[X:T ⟶ T ⟶ ℙ]
(∃z@0:T. ((x (R o S) z@0) ∧ ((R o (X o S)) z@0 y))
⇐⇒ (R o (λx,y. ∃z:T. ((x (S o R) z) ∧ (z X y)) o S)) x \000Cy)⌝⋅
THENM (D -1 With ⌜(S o R)^n - 1 - 1⌝ THEN Auto)
) }
1
.....assertion.....
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. [S] : T ⟶ T ⟶ ℙ
4. n : ℤ
5. n - 1 ≠ 0
6. n ≠ 0
7. [%1] : 0 < n
8. ∀x,y:T. ((R o S)^n - 1 x y
⇐⇒ (R o ((S o R)^n - 1 - 1 o S)) x y)
9. x : T
10. y : T
⊢ ∀[X:T ⟶ T ⟶ ℙ]
(∃z@0:T. ((x (R o S) z@0) ∧ ((R o (X o S)) z@0 y))
⇐⇒ (R o (λx,y. ∃z:T. ((x (S o R) z) ∧ (z X y)) o S)) x y)
Latex:
Latex:
1. [T] : Type
2. [R] : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
3. [S] : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
4. n : \mBbbZ{}
5. n - 1 \mneq{} 0
6. n \mneq{} 0
7. [\%1] : 0 < n
8. \mforall{}x,y:T. (rel\_exp(T; (R o S); n - 1) x y \mLeftarrow{}{}\mRightarrow{} (R o (rel\_exp(T; (S o R); n - 1 - 1) o S)) x y)
9. x : T
10. y : T
\mvdash{} \mexists{}z@0:T. ((x (R o S) z@0) \mwedge{} ((R o (rel\_exp(T; (S o R); n - 1 - 1) o S)) z@0 y))
\mLeftarrow{}{}\mRightarrow{} (R o (\mlambda{}x,y. \mexists{}z:T. ((x (S o R) z) \mwedge{} (z rel\_exp(T; (S o R); n - 1 - 1) y)) o S)) x y
By
Latex:
(Assert \mkleeneopen{}\mforall{}[X:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}]
(\mexists{}z@0:T. ((x (R o S) z@0) \mwedge{} ((R o (X o S)) z@0 y))
\mLeftarrow{}{}\mRightarrow{} (R o (\mlambda{}x,y. \mexists{}z:T. ((x (S o R) z) \mwedge{} (z X y)) o S)) x y)\mkleeneclose{}\mcdot{}
THENM (D -1 With \mkleeneopen{}rel\_exp(T; (S o R); n - 1 - 1)\mkleeneclose{} THEN Auto)
)
Home
Index