Step
*
of Lemma
rel_exp_add
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀m,n:ℕ. ∀[x,y,z:T]. ((x R^m y)
⇒ (y R^n z)
⇒ (x R^m + n z))
BY
{ (RepeatFor 2 ((D 0 THENA Auto))
THEN (InstLemma `complete_nat_ind_with_y` [⌜parm{i}⌝;⌜λ2m.∀n:ℕ
∀[x,y,z:T]. ((x R^m y)
⇒ (y R^n z)
⇒ (x R^m + n z))⌝]⋅
THENA Auto'
)
) }
1
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. i : ℕ
4. ∀j:ℕi. ∀n:ℕ. ∀[x,y,z:T]. ((x R^j y)
⇒ (y R^n z)
⇒ (x R^j + n z))
5. n : ℕ
6. [x] : T
7. [y] : T
8. [z] : T
9. x R^i y
10. y R^n z
⊢ x R^i + n z
2
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. ∀i,n:ℕ. ∀[x,y,z:T]. ((x R^i y)
⇒ (y R^n z)
⇒ (x R^i + n z))
⊢ ∀m,n:ℕ. ∀[x,y,z:T]. ((x R^m y)
⇒ (y R^n z)
⇒ (x R^m + n z))
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}[R:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}].
\mforall{}m,n:\mBbbN{}. \mforall{}[x,y,z:T]. ((x R\^{}m y) {}\mRightarrow{} (y R\^{}n z) {}\mRightarrow{} (x rel\_exp(T; R; m + n) z))
By
Latex:
(RepeatFor 2 ((D 0 THENA Auto))
THEN (InstLemma `complete\_nat\_ind\_with\_y` [\mkleeneopen{}parm\{i\}\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}m.\mforall{}n:\mBbbN{}
\mforall{}[x,y,z:T].
((x rel\_exp(T; R; m) y)
{}\mRightarrow{} (y R\^{}n z)
{}\mRightarrow{} (x rel\_exp(T; R; m + n) z))\mkleeneclose{}]\mcdot{}
THENA Auto'
)
)
Home
Index