Step
*
of Lemma
AF-uniform-induction4-ext
∀T:Type. ∀R:T ⟶ T ⟶ ℙ.
∀Q:T ⟶ ℙ. uniform-TI(T;x,y.R[x;y];t.Q[t])
supposing ∃R':T ⟶ T ⟶ ℙ. (AFx,y:T.R'[x;y] ∧ (∀x,y:T. (R+[x;y]
⇒ (¬R'[x;y]))))
BY
{ xxxExtract of Obid: AF-uniform-induction4
not unfolding
finishing with Auto
normalizes to:
λT,R,Q,F. fix((λx.(F x)))xxx }
Latex:
Latex:
\mforall{}T:Type. \mforall{}R:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}.
\mforall{}Q:T {}\mrightarrow{} \mBbbP{}. uniform-TI(T;x,y.R[x;y];t.Q[t])
supposing \mexists{}R':T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}. (AFx,y:T.R'[x;y] \mwedge{} (\mforall{}x,y:T. (R\msupplus{}[x;y] {}\mRightarrow{} (\mneg{}R'[x;y]))))
By
Latex:
xxxExtract of Obid: AF-uniform-induction4
not unfolding
finishing with Auto
normalizes to:
\mlambda{}T,R,Q,F. fix((\mlambda{}x.(F x)))xxx
Home
Index