Step
*
1
1
of Lemma
TC-equiv-is-equiv
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. rel-diamond-property(T;x,y.R x y)
4. ∃m:T ⟶ ℕ. ∀x,y:T. ((R x y)
⇒ m y < m x)
5. a : T
⊢ R^* a a
BY
{ ((Unfold `transitive-reflexive-closure` 0 THEN Reduce 0) THEN Auto) }
Latex:
Latex:
1. [T] : Type
2. [R] : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
3. rel-diamond-property(T;x,y.R x y)
4. \mexists{}m:T {}\mrightarrow{} \mBbbN{}. \mforall{}x,y:T. ((R x y) {}\mRightarrow{} m y < m x)
5. a : T
\mvdash{} R\^{}* a a
By
Latex:
((Unfold `transitive-reflexive-closure` 0 THEN Reduce 0) THEN Auto)
Home
Index