Nuprl Definition : imp-type
imp-type(A;B) ==  x,y:Base//(least-equiv(Base;λx,y. ((x = y ∈ A) ⇒ (x = y ∈ B))) x y)
Definitions occuring in Statement : 
least-equiv: least-equiv(A;R), 
quotient: x,y:A//B[x; y], 
implies: P ⇒ Q, 
apply: f a, 
lambda: λx.A[x], 
base: Base, 
equal: s = t ∈ T
Definitions occuring in definition : 
quotient: x,y:A//B[x; y], 
apply: f a, 
least-equiv: least-equiv(A;R), 
base: Base, 
lambda: λx.A[x], 
implies: P ⇒ Q, 
equal: s = t ∈ T
FDL editor aliases : 
imp-type
Latex:
imp-type(A;B)  ==    x,y:Base//(least-equiv(Base;\mlambda{}x,y.  ((x  =  y)  {}\mRightarrow{}  (x  =  y)))  x  y)
Date html generated:
2019_06_20-PM-02_01_39
Last ObjectModification:
2018_10_14-PM-05_23_30
Theory : relations2
Home
Index