Step
*
2
1
of Lemma
rel_plus_implies2
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. n : ℤ
4. 0 < n
5. ∀x,y:T. ((x R^n y)
⇒ ((x R y) ∨ (∃z:T. ((x R z) ∧ (z R+ y)))))
6. x : T
7. y : T
8. x R^n + 1 y
⊢ ∃z:T. ((x R z) ∧ (z R+ y))
BY
{ ((((MoveToConcl (-1)) THEN RecUnfold `rel_exp` 0 THEN SplitOnConclITE) THENA Auto)
THEN Reduce 0
THEN Auto'
THEN ExRepD) }
1
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. n : ℤ
4. 0 < n
5. ∀x,y:T. ((x R^n y)
⇒ ((x R y) ∨ (∃z:T. ((x R z) ∧ (z R+ y)))))
6. x : T
7. y : T
8. ¬((n + 1) = 0 ∈ ℤ)
9. z : T
10. x R z
11. z R^(n + 1) - 1 y
⊢ ∃z:T. ((x R z) ∧ (z R+ y))
Latex:
Latex:
1. [T] : Type
2. [R] : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
3. n : \mBbbZ{}
4. 0 < n
5. \mforall{}x,y:T. ((x rel\_exp(T; R; n) y) {}\mRightarrow{} ((x R y) \mvee{} (\mexists{}z:T. ((x R z) \mwedge{} (z R\msupplus{} y)))))
6. x : T
7. y : T
8. x rel\_exp(T; R; n + 1) y
\mvdash{} \mexists{}z:T. ((x R z) \mwedge{} (z R\msupplus{} y))
By
Latex:
((((MoveToConcl (-1)) THEN RecUnfold `rel\_exp` 0 THEN SplitOnConclITE) THENA Auto)
THEN Reduce 0
THEN Auto'
THEN ExRepD)
Home
Index