Step
*
1
of Lemma
rel_star_iff2
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. x : T@i
4. y : T@i
5. n : ℕ@i
6. x R^n y@i
⊢ (∃z:T. ((x R z) ∧ (∃n:ℕ. (z R^n y)))) ∨ (x = y ∈ T)
BY
{ (((AllHyps (RWO "rel_exp_iff2")) THENA Auto) THEN SplitOrHyps THEN ExRepD) }
1
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. x : T@i
4. y : T@i
5. n : ℕ@i
6. z : T
7. 0 < n
8. x R z
9. z R^n - 1 y
⊢ (∃z:T. ((x R z) ∧ (∃n:ℕ. (z R^n y)))) ∨ (x = y ∈ T)
2
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. x : T@i
4. y : T@i
5. n : ℕ@i
6. n = 0 ∈ ℤ
7. x = y ∈ T
⊢ (∃z:T. ((x R z) ∧ (∃n:ℕ. (z R^n y)))) ∨ (x = y ∈ T)
Latex:
Latex:
1. [T] : Type
2. [R] : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
3. x : T@i
4. y : T@i
5. n : \mBbbN{}@i
6. x rel\_exp(T; R; n) y@i
\mvdash{} (\mexists{}z:T. ((x R z) \mwedge{} (\mexists{}n:\mBbbN{}. (z rel\_exp(T; R; n) y)))) \mvee{} (x = y)
By
Latex:
(((AllHyps (RWO "rel\_exp\_iff2")) THENA Auto) THEN SplitOrHyps THEN ExRepD)
Home
Index