Nuprl Lemma : transitive-reflexive-closure-base-case

[A:Type]. ∀[R:A ⟶ A ⟶ ℙ].  ∀x,y:A.  ((x y)  (x R^* y))


Proof




Definitions occuring in Statement :  transitive-reflexive-closure: R^* uall: [x:A]. B[x] prop: infix_ap: y all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q transitive-reflexive-closure: R^* infix_ap: y guard: {T} or: P ∨ Q member: t ∈ T prop: rel_implies: R1 => R2
Lemmas referenced :  equal_wf transitive-closure-contains
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalRule cut hypothesis inrFormation introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality applyEquality functionExtensionality functionEquality universeEquality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x,y:A.    ((x  R  y)  {}\mRightarrow{}  (x  R\^{}*  y))



Date html generated: 2017_01_19-PM-02_17_47
Last ObjectModification: 2017_01_14-PM-05_04_26

Theory : relations2


Home Index