Nuprl Lemma : transitive-reflexive-closure-base-case
∀[A:Type]. ∀[R:A ⟶ A ⟶ ℙ].  ∀x,y:A.  ((x R y) 
⇒ (x R^* y))
Proof
Definitions occuring in Statement : 
transitive-reflexive-closure: R^*
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
transitive-reflexive-closure: R^*
, 
infix_ap: x f y
, 
guard: {T}
, 
or: P ∨ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
rel_implies: R1 => R2
Lemmas referenced : 
equal_wf, 
transitive-closure-contains
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalRule, 
cut, 
hypothesis, 
inrFormation, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
functionExtensionality, 
functionEquality, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x,y:A.    ((x  R  y)  {}\mRightarrow{}  (x  R\^{}*  y))
Date html generated:
2017_01_19-PM-02_17_47
Last ObjectModification:
2017_01_14-PM-05_04_26
Theory : relations2
Home
Index