Nuprl Lemma : transitive-closure-contains
∀[A:Type]. ∀[R:A ⟶ A ⟶ ℙ].  R => TC(R)
Proof
Definitions occuring in Statement : 
transitive-closure: TC(R)
, 
rel_implies: R1 => R2
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
rel_implies: R1 => R2
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
transitive-closure: TC(R)
, 
infix_ap: x f y
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
rel_path: rel_path(A;L;x;y)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
Lemmas referenced : 
length_wf, 
less_than_wf, 
rel_path_wf, 
and_wf, 
length-singleton, 
list_ind_nil_lemma, 
list_ind_cons_lemma, 
nil_wf, 
cons_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
rename, 
introduction, 
sqequalRule, 
dependent_set_memberEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
lambdaEquality, 
universeEquality, 
dependent_pairEquality, 
because_Cache, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
functionEquality, 
cumulativity
Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    R  =>  TC(R)
Date html generated:
2016_05_14-PM-03_51_11
Last ObjectModification:
2016_01_14-PM-11_11_18
Theory : relations2
Home
Index