Nuprl Lemma : transitive-closure-contains

[A:Type]. ∀[R:A ⟶ A ⟶ ℙ].  => TC(R)


Proof




Definitions occuring in Statement :  transitive-closure: TC(R) rel_implies: R1 => R2 uall: [x:A]. B[x] prop: function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] rel_implies: R1 => R2 all: x:A. B[x] implies:  Q member: t ∈ T transitive-closure: TC(R) infix_ap: y subtype_rel: A ⊆B prop: and: P ∧ Q cand: c∧ B rel_path: rel_path(A;L;x;y) so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] pi1: fst(t) pi2: snd(t) less_than: a < b squash: T less_than': less_than'(a;b) true: True
Lemmas referenced :  length_wf less_than_wf rel_path_wf and_wf length-singleton list_ind_nil_lemma list_ind_cons_lemma nil_wf cons_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation rename introduction sqequalRule dependent_set_memberEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin productEquality hypothesisEquality applyEquality hypothesis lambdaEquality universeEquality dependent_pairEquality because_Cache dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation natural_numberEquality imageMemberEquality baseClosed functionEquality cumulativity

Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    R  =>  TC(R)



Date html generated: 2016_05_14-PM-03_51_11
Last ObjectModification: 2016_01_14-PM-11_11_18

Theory : relations2


Home Index