Nuprl Lemma : subtype-base-respects-equality

[A,B:Type].  respects-equality(B;A) supposing B ⊆Base


Proof




Definitions occuring in Statement :  uimplies: supposing a subtype_rel: A ⊆B respects-equality: respects-equality(S;T) uall: [x:A]. B[x] base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T
Lemmas referenced :  general-subtype-respects-equality base_wf base-respects-equality subtype_rel_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality independent_isectElimination Error :universeIsType,  Error :inhabitedIsType,  instantiate universeEquality

Latex:
\mforall{}[A,B:Type].    respects-equality(B;A)  supposing  B  \msubseteq{}r  Base



Date html generated: 2019_06_20-AM-11_19_36
Last ObjectModification: 2018_11_21-PM-10_04_09

Theory : subtype_0


Home Index