Nuprl Lemma : b-union-equality-disjoint2

A,B:Type. ∀a:A. ∀b:B.  ((a b ∈ (A ⋃ B))  (¬¬A ⋂ B))


Proof




Definitions occuring in Statement :  isect2: T1 ⋂ T2 b-union: A ⋃ B all: x:A. B[x] not: ¬A implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q not: ¬A false: False prop: uall: [x:A]. B[x] subtype_rel: A ⊆B
Lemmas referenced :  b-union-equality-disjoint not_wf isect2_wf equal_wf b-union_wf subtype_rel_b-union-left subtype_rel_b-union-right
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination voidElimination isectElimination cumulativity applyEquality sqequalRule universeEquality

Latex:
\mforall{}A,B:Type.  \mforall{}a:A.  \mforall{}b:B.    ((a  =  b)  {}\mRightarrow{}  (\mneg{}\mneg{}A  \mcap{}  B))



Date html generated: 2016_05_13-PM-04_11_46
Last ObjectModification: 2015_12_26-AM-11_12_21

Theory : subtype_1


Home Index