Nuprl Lemma : continuous-monotone-id

ContinuousMonotone(T.T)


Proof




Definitions occuring in Statement :  continuous-monotone: ContinuousMonotone(T.F[T])
Definitions unfolded in proof :  continuous-monotone: ContinuousMonotone(T.F[T]) and: P ∧ Q type-monotone: Monotone(T.F[T]) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B strong-type-continuous: Continuous+(T.F[T]) type-continuous: Continuous(T.F[T])
Lemmas referenced :  subtype_rel_wf continuous-id subtype_rel_self nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation isect_memberFormation introduction cut hypothesis sqequalRule axiomEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality isectEquality applyEquality functionEquality cumulativity

Latex:
ContinuousMonotone(T.T)



Date html generated: 2016_05_13-PM-04_10_16
Last ObjectModification: 2015_12_26-AM-11_22_15

Theory : subtype_1


Home Index