Nuprl Lemma : is-above-axiom-general
∀[T:Type]. ∀[z:Base]. z ~ Ax supposing is-above(T;Ax;z) supposing T ⊆r Base
Proof
Definitions occuring in Statement : 
is-above: is-above(T;a;z)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
base: Base
, 
universe: Type
, 
sqequal: s ~ t
, 
axiom: Ax
Definitions unfolded in proof : 
is-above: is-above(T;a;z)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
has-value: (a)↓
, 
or: P ∨ Q
, 
not: ¬A
, 
false: False
Lemmas referenced : 
subtype_base_sq, 
base_wf, 
subtype_rel_self, 
istype-sqle, 
istype-base, 
subtype_rel_wf, 
istype-universe, 
has-value-monotonic, 
has-value_wf_base, 
is-exception_wf, 
has-value-implies-dec-isaxiom-2, 
not-btrue-sqle-bfalse
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesis, 
independent_isectElimination, 
productElimination, 
hypothesisEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
axiomSqEquality, 
Error :productIsType, 
Error :inhabitedIsType, 
Error :equalityIstype, 
Error :universeIsType, 
baseClosed, 
sqequalBase, 
because_Cache, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
universeEquality, 
divergentSqle, 
sqleReflexivity, 
unionElimination, 
sqleRule, 
voidElimination
Latex:
\mforall{}[T:Type].  \mforall{}[z:Base].  z  \msim{}  Ax  supposing  is-above(T;Ax;z)  supposing  T  \msubseteq{}r  Base
Date html generated:
2019_06_20-PM-00_28_15
Last ObjectModification:
2019_01_20-PM-02_27_27
Theory : subtype_1
Home
Index