Nuprl Lemma : is-above-axiom-general

[T:Type]. ∀[z:Base]. Ax supposing is-above(T;Ax;z) supposing T ⊆Base


Proof




Definitions occuring in Statement :  is-above: is-above(T;a;z) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] base: Base universe: Type sqequal: t axiom: Ax
Definitions unfolded in proof :  is-above: is-above(T;a;z) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a exists: x:A. B[x] and: P ∧ Q sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} has-value: (a)↓ or: P ∨ Q not: ¬A false: False
Lemmas referenced :  subtype_base_sq base_wf subtype_rel_self istype-sqle istype-base subtype_rel_wf istype-universe has-value-monotonic has-value_wf_base is-exception_wf has-value-implies-dec-isaxiom-2 not-btrue-sqle-bfalse
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesis independent_isectElimination productElimination hypothesisEquality dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination axiomSqEquality Error :productIsType,  Error :inhabitedIsType,  Error :equalityIstype,  Error :universeIsType,  baseClosed sqequalBase because_Cache Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  universeEquality divergentSqle sqleReflexivity unionElimination sqleRule voidElimination

Latex:
\mforall{}[T:Type].  \mforall{}[z:Base].  z  \msim{}  Ax  supposing  is-above(T;Ax;z)  supposing  T  \msubseteq{}r  Base



Date html generated: 2019_06_20-PM-00_28_15
Last ObjectModification: 2019_01_20-PM-02_27_27

Theory : subtype_1


Home Index