Nuprl Lemma : isect_subtype
∀[A1:Type]. ∀[B1:A1 ⟶ ℙ]. ∀[A2:Type]. ∀[B2:A2 ⟶ ℙ].
  ((⋂x:A1. B1[x]) ⊆r (⋂x:A2. B2[x])) supposing ((∀x:A2. (B1[x] ⊆r B2[x])) and (A2 ⊆r A1))
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
and: P ∧ Q
Lemmas referenced : 
subtype_rel_isect_general, 
all_wf, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesis, 
universeEquality, 
because_Cache, 
independent_isectElimination, 
independent_pairFormation, 
axiomEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity
Latex:
\mforall{}[A1:Type].  \mforall{}[B1:A1  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[A2:Type].  \mforall{}[B2:A2  {}\mrightarrow{}  \mBbbP{}].
    ((\mcap{}x:A1.  B1[x])  \msubseteq{}r  (\mcap{}x:A2.  B2[x]))  supposing  ((\mforall{}x:A2.  (B1[x]  \msubseteq{}r  B2[x]))  and  (A2  \msubseteq{}r  A1))
Date html generated:
2016_05_13-PM-04_10_39
Last ObjectModification:
2015_12_26-AM-11_21_56
Theory : subtype_1
Home
Index