Nuprl Lemma : per-class-subtype-singleton
∀[T:Type]. ∀[a:T].  (per-class(T;a) ⊆r {x:T| x = a ∈ T} )
Proof
Definitions occuring in Statement : 
per-class: per-class(T;a)
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
per-class: per-class(T;a)
, 
prop: ℙ
Lemmas referenced : 
equal_wf, 
per-class_wf, 
subtype_rel_b-union-right, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
sqequalRule, 
axiomEquality, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[a:T].    (per-class(T;a)  \msubseteq{}r  \{x:T|  x  =  a\}  )
Date html generated:
2017_04_14-AM-07_37_02
Last ObjectModification:
2017_02_27-PM-03_09_11
Theory : subtype_1
Home
Index