Nuprl Lemma : per-class-subtype-singleton

[T:Type]. ∀[a:T].  (per-class(T;a) ⊆{x:T| a ∈ T} )


Proof




Definitions occuring in Statement :  per-class: per-class(T;a) subtype_rel: A ⊆B uall: [x:A]. B[x] set: {x:A| B[x]}  universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B per-class: per-class(T;a) prop:
Lemmas referenced :  equal_wf per-class_wf subtype_rel_b-union-right base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality equalityTransitivity hypothesis equalitySymmetry extract_by_obid isectElimination cumulativity hypothesisEquality applyEquality because_Cache sqequalRule axiomEquality isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[a:T].    (per-class(T;a)  \msubseteq{}r  \{x:T|  x  =  a\}  )



Date html generated: 2017_04_14-AM-07_37_02
Last ObjectModification: 2017_02_27-PM-03_09_11

Theory : subtype_1


Home Index