Nuprl Lemma : per-class_wf

[T:Type]. ∀[a:Base ⋃ T].  (per-class(T;a) ∈ Type)


Proof




Definitions occuring in Statement :  per-class: per-class(T;a) b-union: A ⋃ B uall: [x:A]. B[x] member: t ∈ T base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T per-class: per-class(T;a) b-union: A ⋃ B tunion: x:A.B[x] bool: 𝔹 unit: Unit ifthenelse: if then else fi  pi2: snd(t) prop:
Lemmas referenced :  b-union_wf base_wf equal-wf-base equal-wf-base-T
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut setEquality sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isectElimination thin hypothesisEquality isect_memberEquality because_Cache universeEquality imageElimination productElimination unionElimination equalityElimination

Latex:
\mforall{}[T:Type].  \mforall{}[a:Base  \mcup{}  T].    (per-class(T;a)  \mmember{}  Type)



Date html generated: 2016_05_13-PM-04_12_30
Last ObjectModification: 2015_12_26-AM-11_12_07

Theory : subtype_1


Home Index