Nuprl Lemma : per-class_wf
∀[T:Type]. ∀[a:Base ⋃ T].  (per-class(T;a) ∈ Type)
Proof
Definitions occuring in Statement : 
per-class: per-class(T;a), 
b-union: A ⋃ B, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
base: Base, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
per-class: per-class(T;a), 
b-union: A ⋃ B, 
tunion: ⋃x:A.B[x], 
bool: 𝔹, 
unit: Unit, 
ifthenelse: if b then t else f fi , 
pi2: snd(t), 
prop: ℙ
Lemmas referenced : 
b-union_wf, 
base_wf, 
equal-wf-base, 
equal-wf-base-T
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
setEquality, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality, 
imageElimination, 
productElimination, 
unionElimination, 
equalityElimination
Latex:
\mforall{}[T:Type].  \mforall{}[a:Base  \mcup{}  T].    (per-class(T;a)  \mmember{}  Type)
Date html generated:
2016_05_13-PM-04_12_30
Last ObjectModification:
2015_12_26-AM-11_12_07
Theory : subtype_1
Home
Index