Nuprl Lemma : strong-continuous-isect2
∀[F,G:Type ⟶ Type].  (Continuous+(T.F[T] ⋂ G[T])) supposing (Continuous+(T.G[T]) and Continuous+(T.F[T]))
Proof
Definitions occuring in Statement : 
strong-type-continuous: Continuous+(T.F[T]), 
isect2: T1 ⋂ T2, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
so_lambda: λ2x.t[x], 
prop: ℙ, 
cand: A c∧ B, 
bfalse: ff, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
isect2: T1 ⋂ T2, 
subtype_rel: A ⊆r B, 
and: P ∧ Q, 
ext-eq: A ≡ B, 
strong-type-continuous: Continuous+(T.F[T]), 
uimplies: b supposing a, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
exists: ∃x:A. B[x]
Lemmas referenced : 
isect_subtype_rel_trivial, 
nat_wf, 
isect2_wf, 
isect2_subtype_rel, 
subtype_rel_wf, 
isect2_subtype_rel2, 
bool_wf, 
isect2_decomp, 
strong-type-continuous_wf
Rules used in proof : 
because_Cache, 
universeEquality, 
cumulativity, 
functionEquality, 
axiomEquality, 
independent_pairEquality, 
equalitySymmetry, 
equalityTransitivity, 
productElimination, 
hypothesisEquality, 
applyEquality, 
isectElimination, 
isectEquality, 
hypothesis, 
lemma_by_obid, 
equalityElimination, 
thin, 
unionElimination, 
sqequalHypSubstitution, 
isect_memberEquality, 
lambdaEquality, 
independent_pairFormation, 
cut, 
introduction, 
isect_memberFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution, 
extract_by_obid, 
independent_isectElimination, 
dependent_pairFormation
Latex:
\mforall{}[F,G:Type  {}\mrightarrow{}  Type].
    (Continuous+(T.F[T]  \mcap{}  G[T]))  supposing  (Continuous+(T.G[T])  and  Continuous+(T.F[T]))
Date html generated:
2019_06_20-PM-00_27_39
Last ObjectModification:
2018_08_07-PM-05_10_05
Theory : subtype_1
Home
Index