Nuprl Lemma : strong-continuous-set
∀[A:Type]. ∀[P:A ⟶ ℙ]. ∀[F:Type ⟶ Type].
  (Continuous+(T.{x:F[T]| P[x]} )) supposing (Continuous+(T.F[T]) and (∀T:Type. (F[T] ⊆r A)))
Proof
Definitions occuring in Statement : 
strong-type-continuous: Continuous+(T.F[T])
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
so_apply: x[s]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
strong-type-continuous: Continuous+(T.F[T])
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
exists: ∃x:A. B[x]
, 
guard: {T}
, 
all: ∀x:A. B[x]
Lemmas referenced : 
all_wf, 
strong-type-continuous_wf, 
subtype_rel_set, 
subtype_rel_sets, 
subtype_rel_transitivity, 
subtype_rel_wf, 
nat_wf, 
isect_subtype_rel_trivial, 
set_wf, 
le_wf, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_pairFormation, 
productElimination, 
promote_hyp, 
lambdaEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
lambdaFormation, 
lemma_by_obid, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
setElimination, 
rename, 
imageMemberEquality, 
baseClosed, 
because_Cache, 
imageElimination, 
isect_memberEquality, 
setEquality, 
independent_isectElimination, 
dependent_pairFormation, 
isectEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
independent_pairEquality, 
axiomEquality, 
instantiate, 
dependent_functionElimination
Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[F:Type  {}\mrightarrow{}  Type].
    (Continuous+(T.\{x:F[T]|  P[x]\}  ))  supposing  (Continuous+(T.F[T])  and  (\mforall{}T:Type.  (F[T]  \msubseteq{}r  A)))
Date html generated:
2016_05_13-PM-04_10_04
Last ObjectModification:
2016_01_14-PM-07_29_48
Theory : subtype_1
Home
Index