Nuprl Lemma : strong-continuous-set

[A:Type]. ∀[P:A ⟶ ℙ]. ∀[F:Type ⟶ Type].
  (Continuous+(T.{x:F[T]| P[x]} )) supposing (Continuous+(T.F[T]) and (∀T:Type. (F[T] ⊆A)))


Proof




Definitions occuring in Statement :  strong-type-continuous: Continuous+(T.F[T]) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  so_apply: x[s] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a strong-type-continuous: Continuous+(T.F[T]) ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: squash: T so_lambda: λ2x.t[x] exists: x:A. B[x] guard: {T} all: x:A. B[x]
Lemmas referenced :  all_wf strong-type-continuous_wf subtype_rel_set subtype_rel_sets subtype_rel_transitivity subtype_rel_wf nat_wf isect_subtype_rel_trivial set_wf le_wf false_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalHypSubstitution hypothesis isectElimination thin hypothesisEquality independent_pairFormation productElimination promote_hyp lambdaEquality dependent_set_memberEquality natural_numberEquality lambdaFormation lemma_by_obid equalityTransitivity equalitySymmetry applyEquality setElimination rename imageMemberEquality baseClosed because_Cache imageElimination isect_memberEquality setEquality independent_isectElimination dependent_pairFormation isectEquality functionEquality cumulativity universeEquality independent_pairEquality axiomEquality instantiate dependent_functionElimination

Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[F:Type  {}\mrightarrow{}  Type].
    (Continuous+(T.\{x:F[T]|  P[x]\}  ))  supposing  (Continuous+(T.F[T])  and  (\mforall{}T:Type.  (F[T]  \msubseteq{}r  A)))



Date html generated: 2016_05_13-PM-04_10_04
Last ObjectModification: 2016_01_14-PM-07_29_48

Theory : subtype_1


Home Index