Nuprl Lemma : strong-subtype_witness

[A,B:Type].  (strong-subtype(A;B)  (<Ax, Ax> ∈ strong-subtype(A;B)))


Proof




Definitions occuring in Statement :  strong-subtype: strong-subtype(A;B) uall: [x:A]. B[x] implies:  Q member: t ∈ T pair: <a, b> universe: Type axiom: Ax
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q strong-subtype: strong-subtype(A;B) cand: c∧ B subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] prop:
Lemmas referenced :  exists_wf equal_wf strong-subtype_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalRule independent_pairEquality axiomEquality lambdaEquality hypothesisEquality applyEquality sqequalHypSubstitution hypothesis productElimination thin setEquality lemma_by_obid isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[A,B:Type].    (strong-subtype(A;B)  {}\mRightarrow{}  (<Ax,  Ax>  \mmember{}  strong-subtype(A;B)))



Date html generated: 2016_05_13-PM-04_10_57
Last ObjectModification: 2015_12_26-AM-11_21_43

Theory : subtype_1


Home Index