Nuprl Lemma : t-sqle_reflexive
∀[T:Type]. ∀a:T. t-sqle(T;a;a)
Proof
Definitions occuring in Statement : 
t-sqle: t-sqle(T;a;b)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
t-sqle: t-sqle(T;a;b)
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
per-class: per-class(T;a)
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
Lemmas referenced : 
sq_stable__t-sqle, 
base_wf, 
subtype_rel_b-union-right, 
per-class_wf, 
exists_wf, 
sqle_wf_base, 
is-exception_wf, 
has-value_wf_base, 
squash-per-class
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
imageElimination, 
hypothesis, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
rename, 
dependent_pairFormation, 
divergentSqle, 
sqleReflexivity, 
setElimination, 
cumulativity, 
applyEquality, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}a:T.  t-sqle(T;a;a)
Date html generated:
2016_05_13-PM-04_12_50
Last ObjectModification:
2016_01_14-PM-07_29_11
Theory : subtype_1
Home
Index