Nuprl Lemma : uimplies_subtype

[A,B:Type]. ∀[P:ℙ].  (A supposing P ⊆B) supposing ((A ⊆B) and P)


Proof




Definitions occuring in Statement :  uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] prop: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a guard: {T} prop: so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] subtype_rel: A ⊆B
Lemmas referenced :  isect_subtype_rel_trivial subtype_rel_transitivity subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution sqequalRule lemma_by_obid isectElimination thin hypothesisEquality lambdaEquality independent_isectElimination independent_pairFormation hypothesis isectEquality because_Cache axiomEquality isect_memberEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[P:\mBbbP{}].    (A  supposing  P  \msubseteq{}r  B)  supposing  ((A  \msubseteq{}r  B)  and  P)



Date html generated: 2016_05_13-PM-04_10_37
Last ObjectModification: 2015_12_26-AM-11_22_00

Theory : subtype_1


Home Index