Nuprl Lemma : uimplies_subtype
∀[A,B:Type]. ∀[P:ℙ].  (A supposing P ⊆r B) supposing ((A ⊆r B) and P)
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
guard: {T}
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
isect_subtype_rel_trivial, 
subtype_rel_transitivity, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
sqequalRule, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
independent_isectElimination, 
independent_pairFormation, 
hypothesis, 
isectEquality, 
because_Cache, 
axiomEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[P:\mBbbP{}].    (A  supposing  P  \msubseteq{}r  B)  supposing  ((A  \msubseteq{}r  B)  and  P)
Date html generated:
2016_05_13-PM-04_10_37
Last ObjectModification:
2015_12_26-AM-11_22_00
Theory : subtype_1
Home
Index